Sheet 0

These are meant for revision, not for handing in. But do ask class tutor if any are problematic!
R is a commutative ring with $1, I$ and J are ideals of $R . F$ is a field.
PID $=$ Principal ideal domain: an integral domain R in which every ideal is principal, i.e. of the form $a R, a \in R$.

1. (i) Verify that $I+J, I \cap J$ and $I J$ are ideals, and that $I J \subseteq I \cap J$.
(ii) Suppose that $I+J=R$. Show that $I^{n}+J^{m}=R$ for all $m, n \in \mathbb{N}$. (I^{n} denotes $I \cdot I \cdot \ldots \ldots \cdot I$ with n factors). Show that $I J=I \cap J$. Show that

$$
\frac{R}{I \cap J} \cong \frac{R}{I} \times \frac{R}{J}
$$

(This should remind you of the Chinese Remainder Theorem.) What is the identity element of this direct product of rings?
2. Show that I is a maximal ideal if and only if R / I is a field ('maximal' means maximal w.r.t. inclusion in the set of all proper ideals). Deduce that maximal ideals are prime.
3. Let P be a prime ideal of R. Show that if $I J \subseteq P$ then $I \subseteq P$ or $J \subseteq P$.
4. Which of the following rings are PIDs? (i) $\mathbb{Z}[t]$ (polynomial ring in one variable); (ii) $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$; (iii) $\mathbb{Z}[\sqrt{-1}]$; (iv) $F[t]$; (v) $F\left[t_{1}, t_{2}\right]$. (Ans.: just (iii) and (iv). Prove this!)
5. Suppose that $I=a R$ is principal. (i) Show that $I=R$ iff a is a unit (invertible element of R).

Now assume that $R \neq I \neq 0$. (ii) Prove that I is prime if and only if a is a prime element of R (i.e. if a divides $b c$ then a divides b or a divides c.)

Assume further that R is an integral domain. (iii) Show that if $a R$ is prime and

$$
a R \subseteq b R \neq R
$$

then $a R=b R$. Deduce that if R is a PID then every prime ideal is maximal.
(iv) Prove that if I is maximal then a is an irreducible element (i.e. if $a=b c$ then b is a unit or c is a unit).
(v) Prove the converse of (iv) in the case where R is a PID. Deduce that every PID is a UFD (unique factorization domain).
(vi) Let $R=\mathbb{Z}[\sqrt{-5}]$; show that 2 is irreducible in R but $2 R$ is not a maximal ideal (Hint: verify that $2 R \subset 2 R+(1+\sqrt{-5}) R \subset R$.)

